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Abstract. Background ozone (O3) refers to O3 concentrations that remain unaffected by direct local 8 

anthropogenic emissions, critical for comprehending tropospheric O3 pollution, as it defines the baseline 9 

levels without local anthropogenic emissions. Accurately estimating background O3 is essential for 10 

determining the maximum achievable reductions in O3 through anthropogenic precursor emissions 11 

control and for developing effective air quality management strategies. This review synthesizes the 12 

definition and estimation methods for background O3, including in situ measurement, statistical analysis, 13 

numerical modeling, and integrated method. A meta-analysis of the spatiotemporal distribution of 14 

background O3 across China from 1994 to 2020 reveals substantial spatial variability, with the highest 15 

concentrations in the Northwest region (48 ppb) and the lowest in the Northeast and Central regions (~33 16 

ppb). The national average background O3 concentration is approximately 40 ppb, contributing 77 % to 17 

the tropospheric maximum daily 8-hour average ozone. Estimation methods show notable discrepancies: 18 

in situ measurement and statistical analysis methods yield higher estimates, while integrated method 19 

provide lower yet more consistent values. On a global scale, background O3 concentrations in China are 20 

ranked medium-to-high and exhibit an increasing trend. This review, from a global perspective, 21 

highlights the need for integrated estimation methods to improve accuracy, underscores the importance 22 

of international collaboration in addressing long-range pollutant transport, and calls for further research 23 

on the interactions between background O3 and climate change. By advancing the understanding of 24 

background O3 dynamics, this study provides critical insights for atmospheric chemistry research and air 25 

pollution control efforts in China and beyond. 26 
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1 Introduction 27 

Since the implementation of the “Air Pollution Prevention and Control Action Plan” in 2013 and the 28 

subsequent “Three-Year Action Plan for Winning the Blue Sky War”, China has made significant 29 

progress in air quality management, particularly in reducing fine particulate matter (PM2.5) 30 

concentrations. These policies have been effective in curbing PM2.5 levels, with nationwide PM2.5 31 

concentrations declining by approximately 50 % from 2013 to 2020 (Geng et al., 2024). However, despite 32 

these successes in controlling PM2.5, the annual average concentration of ozone (O3) in major urban 33 

clusters has exhibited a persistent upward trend. From 2015 to 2022, the frequency of O3 pollution days 34 

has steadily increased, with urban areas such as Beijing, Shanghai, and Guangzhou experiencing a 35 

marked rise in O3 concentrations (Li et al., 2019; Wang et al., 2023). Notably, large-scale, prolonged O3 36 

pollution episodes have also become more frequent, with the number of days exceeding the national O3 37 

standard more than doubling in some regions over the past decade (Ozone Pollution Control Committee 38 

of Chinese Society of Environmental Sciences, 2024). Therefore, the “Opinions on Deepening the Fight 39 

Against Pollution”, issued by the Central Committee of the Communist Party of China and the State 40 

Council, acknowledged these challenges and explicitly mandated that the coordinated control of both 41 

PM2.5 and O3 should be incorporated into the “14th Five-Year Plan” (2021-2025), signaling a new phase 42 

in addressing multi-pollutant control. 43 

O3 is a secondary pollutant formed through complex photochemical reactions involving volatile 44 

organic compounds (VOCs) and nitrogen oxides (NOx). Tropospheric O3 refers to O3 in the lower part 45 

of the atmosphere and consists of two primary components: O3 produced from anthropogenic precursor 46 

emissions and background O3, both of which directly impacts human health, ecological ecosystems, and 47 

agricultural productivity (McDonald-Buller et al., 2011; Wang et al., 2009b). Background O3 refers to 48 

the portion of O3 concentrations that remain unaffected by direct local anthropogenic emissions. Its 49 

sources are diverse, including natural emissions from vegetation, soil, lightning, and wildfires, as well as 50 

O3 produced from methane (CH4) oxidation, stratosphere-troposphere exchange (STE), and the long-51 

range transport of pollutants, as shown in Fig. 1 (Dolwick et al., 2015; Thompson, 2019). It is important 52 

to note that in the pre-industrial era (~1750), CH4 emissions were overwhelmingly dominated by natural 53 
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sources (e.g., wetlands, inland freshwaters, and geological), accounting for approximately 95% of global 54 

emissions (Lassey et al., 2000; Prather et al., 2012; Valdes et al., 2005), which contributed to relatively 55 

stable atmospheric CH4 concentrations (Ehhalt et al., 2001; Wuebbles and Hayhoe, 2002). Owing to its 56 

long atmospheric lifetime (8-9 years) and well-mixed global distribution, CH4 played a crucial role in 57 

sustaining background O3 levels on a global scale (Fiore et al., 2002; Vingarzan, 2004; West and Fiore, 58 

2005; Thompson, 2019). Accordingly, CH4 oxidation has traditionally been regarded as a contributor to 59 

background O3 (Skipper et al., 2021; Sun et al., 2024; Thompson, 2019; Vingarzan, 2004; Wu et al., 60 

2008). However, with the intensification of anthropogenic activities, the proportion of CH4 emissions 61 

attributable to human sources (e.g., agriculture, fossil fuels, landfills and waste) has risen markedly from 62 

31% in 1850 to 61 % by 2012 (Fiore et al., 2002; Jackson et al., 2024; Kirschke et al., 2013; Lelieveld et 63 

al., 1998; Saunois et al., 2016). In light of this shift, the contribution of anthropogenically derived CH4 64 

to O3 formation can no longer be classified as part of the background component. To improve the 65 

accuracy of background O3 assessments, it is therefore essential that future studies explicitly differentiate 66 

and exclude the influence of anthropogenic CH4 emissions. 67 

Background O3, primarily influenced by natural sources and large-scale environmental factors (e.g., 68 

long-range transport of pollutants, and regional meteorological conditions), typically contributes 60-80 % 69 

of total tropospheric O3 at both global and regional scales (Akimoto et al., 2015; Chen et al., 2022; 70 

Dolwick et al., 2015; Lee and Park, 2022; Lefohn et al., 2014; Zhang et al., 2011). Unlike PM2.5, which 71 

can be more directly controlled through emission reductions, the management of O3 is more complex 72 

and has become a significant challenge in global air quality governance (Chen et al., 2022). Research has 73 

shown that reductions in anthropogenic precursor emissions of O3 have led to declines in pollution 74 

episodes in regions such as Europe, the United States, and Japan. However, background O3 75 

concentrations continue to rise, complicating efforts to reduce overall ground-level O3 pollution 76 

(Akimoto et al., 2015; Cooper et al., 2012; Wilson et al., 2012; Yan et al., 2021). For example, studies 77 

from the United States show that while emissions reductions have resulted in fewer O3 exceedance days, 78 

the relative contribution of background O3 to total ground-level O3 has risen by approximately 6 % over 79 

the past two decades (Jaffe et al., 2018). In recent years, environmental changes such as global climate 80 
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change, increased CH4 emissions, and transboundary pollution have led to a steady increase in 81 

background O3 levels (Chen et al., 2022; Vingarzan, 2004). This rise is particularly evident in regions 82 

like East Asia, where transboundary pollution from neighboring countries exacerbates the problem 83 

(Vingarzan, 2004). Furthermore, as emissions of anthropogenic precursors continue to be controlled, it 84 

is projected that the relative contribution of background O3 to overall O3 pollution will become 85 

increasingly significant (Jaffe et al., 2018; Lam and Cheung, 2022; Skipper et al., 2021). This shift will 86 

require a rethinking of air quality management strategies, with greater emphasis on mitigating the factors 87 

influencing background O3 levels, such as reducing global CH4 emissions and addressing transboundary 88 

pollution. 89 

Unlike O3 formed from anthropogenic precursors, background O3 cannot be mitigated through local 90 

emission reductions. Instead, it represents the “baseline” level for regional O3 pollution, determining the 91 

maximum achievable reduction in ground-level O3 through local anthropogenic emission controls (Fiore 92 

et al., 2014; Wang et al., 2009a; Zhang et al., 2011). The increasing levels of background O3 are 93 

complicating air quality management because they limit the effectiveness of local emission reductions 94 

(Thompson, 2019; Vingarzan, 2004). In regions such as the United States and Europe, elevated levels of 95 

background O3 undermine the effectiveness of ongoing efforts to meet current O3 standards and present 96 

a major obstacle to meeting more stringent future standards (Thompson, 2019; Vingarzan, 2004). The 97 

persistence of high background O3 levels has become a critical area of scientific and policy research 98 

worldwide. For example, the National Aeronautics and Space Administration (NASA) has highlighted 99 

background O3 as a priority issue in efforts to reduce O3 pollution in the United States (Huang et al., 100 

2015). Similarly, the “China Blue Book on Prevention and Control of Atmospheric Ozone Pollution 101 

(2020) ” recognizes urban O3 pollution and regional background O3 concentrations as significant 102 

challenges for future O3 management and emphasizes the need for advanced research to better understand 103 

regional variations in background O3 concentrations and their impact on local air quality (Ozone 104 

Pollution Control Committee of Chinese Society of Environmental Sciences, 2022).  105 

The complexity and global implications of background O3 make it an essential focus of research in 106 

atmospheric chemistry, climate change, and air quality management. Its contribution to total tropospheric 107 
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O3 concentrations is both substantial and difficult to control, as it is influenced by a range of natural and 108 

anthropogenic factors beyond the immediate control of local emission regulations. Despite its growing 109 

importance, key gaps remain in understanding the sources, variability, and impacts of background O3. 110 

This study aims to provide a comprehensive review of the definitions and estimation methods for 111 

background O3, offering a foundation for advancing scientific understanding in this area. By utilizing 112 

publicly available datasets, we systematically examine the spatial and temporal variations of background 113 

O3 across China, uncovering regional heterogeneities, discrepancies between different estimation 114 

methods, and key influencing factors. Additionally, we conduct a comparative analysis of China’s 115 

background O3 levels with those in other global regions, providing a broader context for understanding 116 

the dynamics of background O3 in the face of global environmental change. This comparative analysis 117 

not only reveals the distinct challenges China faces in managing O3 pollution but also provides broader 118 

insights into regional difference in background O3, reinforcing the importance of the global outlook in 119 

addressing this issue. Finally, we propose potential directions for future research on background O3, 120 

emphasizing the importance of filling existing knowledge gaps in this field. As background O3 continues 121 

to influence the effectiveness of O3 mitigation efforts, this research is pivotal for shaping future air quality 122 

management strategies and ensuring the protection of public health and ecosystems. 123 
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 124 
Figure 1: Conceptual diagram of O3 components and sources. 125 

2 Materials and methods 126 

2.1 Data source and study area 127 

To provide a comprehensive synthesis of advancements in the study of background O3, a systematic 128 

literature search was conducted across major academic databases, including the Web of Science, Google 129 

Scholar, Science Direct (Elsevier), Scopus, Springer, Wiley, and China National Knowledge 130 

Infrastructure (CNKI). The search was centered on the following key thematic terms: 131 

background/baseline/natural, ozone/O3, regional background ozone/O3, and policy relevant background 132 

ozone/O3, ensuring the inclusion of a wide range of relevant studies. This study identified 171 pertinent 133 

documents, comprising 134 peer-reviewed English-language papers, 25 peer-reviewed Chinese-language 134 

papers, 4 English-language reports, 4 English-language books, 2 Chinese-language books, and 2 135 

Chinese-language master’s theses. These documents form the core foundation of this review, which 136 

traces the evolution of the definition and estimation method for background O3 over a span of seven 137 
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decades (1952-2024), providing a comprehensive historical perspective on the development of the field.  138 

In addition to reviewing the definition and estimation method for background O3, we also analyzed 139 

the spatial and temporal characteristics of regional background O3 concentrations in China during the 140 

period 1994-2020. This analysis was based on 44 peer-reviewed papers, including 28 papers in English 141 

and 16 papers in Chinese, which collectively provided over 700 data points on background O3 142 

concentration from various regions and time periods within China. The dataset includes diverse temporal 143 

resolutions, such as annual data (31 %, 237 data points), seasonal data (26 %, 195 data points), and 144 

monthly data (43 %, 326 data points). To offer a deeper understanding of the seasonal distribution of data, 145 

the seasonal and monthly data were further categorized as follows: spring (24 %, 127 data points), 146 

summer (28 %, 145 data points), autumn (24 %, 125 data points), and winter (24 %, 124 data points). 147 

The seasonal divisions were based on standard meteorological periods: spring (March-May), summer 148 

(June-August), autumn (September-November), and winter (December-February). Detailed information 149 

on the collected data, including a breakdown of regional and temporal distributions, is provided in Table 150 

S1.  151 

To assess the regional differences in background O3 concentrations across China, the country was 152 

categorized into seven geo-administrative regions based on a combination of social, natural, economic, 153 

and human environmental factors (He et al., 2023). These regions include Northeast China (NEC), North 154 

China (NC), East China (EC), Central China (CC), Northwest China (NWC), Southwest China (SWC), 155 

and South China (SC), as shown in Fig. 4. A detailed description of these regional divisions is provided 156 

in Table S2.  157 

2.2 Data process 158 

The background O3 concentrations presented in this study are expressed as molar mixing ratios in parts 159 

per billion ( ). In some literature, the background O3 concentrations are reported in micrograms per 160 

cubic meter ( ). To ensure consistency with international standard units and facilitate comparisons 161 

with global datasets, unit conversion was performed using the following Eq. (1):  162 

,             (1) 163 
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Where 22.4  represents the molar volume of an ideal gas at standard temperature (0 °C) 164 

and pressure (101.325 kPa), while 48  is the molar mass of O3. 165 

2.3 Trend analysis 166 

This study employed linear regression analysis to examine the annual trend in background O3 167 

concentration and assess the statistical significance of these trends over time. Specifically, linear 168 

regression was applied to a scatter plot of background O3 concentrations across different years, using the 169 

least squares to determine the relationship between background O3 concentration and time. 170 

To evaluate the model’s performance, the coefficient of determination (R2) was calculated. R² 171 

represents the proportion of variance in background O3 concentration explained by the linear model, 172 

indicating how well the model fits the observed data. Higher R² values suggest a strong fit, while lower 173 

values indicate a weaker fit. The P-value was also calculated to test the statistical significance of the 174 

linear relationship between background O3 concentration and time. A smaller P-value (typically less than 175 

0.05) indicates a statistically significant linear relationship, suggesting that the observed trend is unlikely 176 

to have occurred by chance. In contrast, larger P-values imply that the trend may not be statistically 177 

significant and could result from random variation. 178 

It is important to note that, for the analysis of interannual variations in background O3 concentration, 179 

only annual data from our compiled data set were used. Data points from individual studies that 180 

significantly deviated from the overall trend were excluded to ensure the robustness of the analysis. 181 

However, consecutive data points with large deviations were retained for consistency. Furthermore, when 182 

background O3 concentrations were derived using different methods in the same geographical region 183 

within the same study, the results were averaged to provide a more representative value.  184 

3 Background ozone: conceptual evolution and key definitions 185 

Background O3 generally refers to the portion of O3 concentrations that are not influenced by direct local 186 

anthropogenic emissions, though its definition varies across studies globally. In contemporary 187 

atmospheric research, background O3 is commonly categorized into two distinct types: natural 188 

background ozone (NBO) and regional background ozone (RBO). These two categories are crucial for 189 
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understanding the sources and variations of background O3 on both local and global scales. Figure 2 190 

presents the evolution of background O3 definitions. 191 

Natural background ozone (NBO) refers to O3 that forms exclusively through natural processes, 192 

independent of anthropogenic emissions (McDonald-Buller et al., 2011; Vingarzan, 2004; Wu et al., 193 

2008). The primary sources of NBO include VOCs and NOx emitted by natural sources such as vegetation, 194 

soil, lightning, wildfires, and the oxidation of CH4, as well as O3 exchange between the stratosphere and 195 

troposphere (Thompson, 2019). Historically, research into NBO originated with studies on atmospheric 196 

photochemistry. In the 1950s, investigations into photochemical smog in Los Angeles identified O3 as a 197 

major component of smog, linking vehicular emissions of VOCs and NOx to its formation (Haagen-Smit, 198 

1952). While these studies primarily focused on anthropogenic sources, they also observed detectable O3 199 

concentrations in remote regions, far from urban pollution, suggesting natural processes contributed to 200 

O3 production (Galbally et al., 1986; Volz and Kley, 1988). By the late 1970s, systematic studies in the 201 

United States identified key natural sources of O3, such as biogenic VOCs (BVOCs), lightning, and soil-202 

emitted NOₓ, leading to the formation of the NBO concept (Crutzen, 1974; Jacob et al., 1999; Liu et al., 203 

1987). Although NBO holds significant scientific importance, its practical application as a regulatory 204 

tool remains limited, particularly in the Northern Hemisphere, where anthropogenic emissions dominate 205 

regional O3 production (Berlin et al., 2013). Nonetheless, NBO is a critical reference for establishing 206 

baseline O3 levels globally, facilitating the evaluation of human contribution to atmospheric O3 207 

concentration. 208 

In the 1990s, researchers in the United States began to recognize the critical role of long-range 209 

transport from anthropogenic sources in regional O3 levels (Fiore et al., 2002a; Jacob et al., 1999; 210 

Vingarzan, 2004). This realization was pivotal in developing the concept of United States Background 211 

Ozone (USBO), which includes O3 contributions from global NBO as well as anthropogenic emissions 212 

originating outside the country, such as from neighboring regions like Canada and Mexico (Skipper et 213 

al., 2021; Thompson, 2019). Acknowledging these external sources highlighted that background O3 214 

levels could not be fully mitigated through domestic emission reductions alone. 215 

By the early 21st century, research on background O3 increasingly intersected with air quality policy 216 
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development. A notable milestone was the introduction of Policy Relevant Background Ozone (PRBO) 217 

by the United States Environmental Protection Agency (EPA) in 2006 during revisions to the National 218 

Ambient Air Quality Standards (NAAQS) (U.S. EPA, 2006; Zhang et al., 2011). PRBO refers to ground-219 

level O3 concentrations that exclude all anthropogenic emissions from North America (the United States, 220 

Canada and Mexico) while accounting for natural sources and long-range transport from anthropogenic 221 

and natural sources outside North America (Emery et al., 2012; Nopmongcol et al., 2016). This concept 222 

aimed to help policymakers assess the effectiveness of domestic control measures in reducing O3 223 

pollution and inform the establishment of stricter O3 standards. By differentiating controllable from 224 

uncontrollable O3 sources, PRBO enabled a more targeted approach to air quality management, framing 225 

policy discussions around the limitations of local pollution control in addressing O3 levels (Duc et al., 226 

2013; Zhang et al., 2011). The introduction of PRBO marked a significant transition in background O3 227 

research, shifting from a predominantly scientific focus to one directly informing air quality policy and 228 

regulatory frameworks (Hosseinpour et al., 2024; U.S. EPA, 2006, 2007). 229 

Although USBO and PRBO share some common elements, their definitions differ primarily in 230 

geographic scope. PRBO focuses on transboundary contributions from regions outside North America, 231 

whereas USBO includes emissions from neighboring countries, such as Canada and Mexico, that affect 232 

the United States O3 concentration. To address regional variations and better capture the dynamic of 233 

background O3 in specific areas, advancements in atmospheric chemistry models have enabled scientists 234 

to differentiate the contributions of various sources to background O3. This led to the emergence and 235 

widespread adoption of the term Regional Background Ozone (RBO) around the 2010s (Kemball-Cook 236 

et al., 2009; Langford et al., 2009; Ou-Yang et al., 2013). RBO refers to O3 concentrations within a 237 

defined region that are unaffected by direct local anthropogenic emissions. Its main sources include 238 

natural emissions (e.g., BVOCs, soil, wildfires, and lightning), the oxidation of CH4, stratospheric-239 

tropospheric exchange, and long-range transport (McDonald-Buller et al., 2011; Skipper et al., 2021; Sun 240 

et al., 2024; Wang et al., 2022). 241 

The distinction between NBO and RBO is crucial for understanding the complexity of background 242 

O3 concentrations, as each reflects different sources and scales of influence. NBO represents a natural 243 
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baseline, dominated by non-anthropogenic factors, serving as a reference point for assessing the human 244 

impact on atmospheric composition. In contrast, RBO reflects the interplay of natural and anthropogenic 245 

sources at local and global scales. Advancing our understanding of both NBO and RBO is essential for 246 

improving air quality models, refining emission control strategies, and establishing science-based 247 

standards for O3 pollution reduction. 248 

 249 

Figure 2: The evolution of background O3 definitions. 250 

4 Methods for estimating background ozone concentrations 251 

The estimation of regional background O3 is typically conducted using four primary methods: (1) in situ 252 

measurement estimation, (2) statistical analysis estimation, (3) numerical modeling estimation, and (4) 253 

integrated method estimation. Figure 3 summarizes the advantages, limitations, and applicability of each 254 

method, providing a comparative overview of their respective strengths and weaknesses. 255 

4.1 In situ measurement estimation 256 

The in situ measurement estimation method involves the deployment of monitoring stations in remote or 257 

elevated areas, typically located far from direct pollution sources, to measure O3 concentrations directly 258 

(Lam and Cheung, 2022; Wang et al., 2009b). This approach is widely recognized as one of the most 259 

direct and commonly used methods for estimating regional background O3. It is relatively straightforward 260 
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to implement, requires minimal post-measurement processing, and provides continuous, high frequency 261 

data on O3 variations across spatial and temporal scales. These attributes render it an invaluable tool for 262 

tracking long-term trends in background O3 concentrations. 263 

However, this method has limitations, particularly concerning the spatial representativeness of the 264 

data. The limited number of monitoring stations, especially in regions with complex terrain or vast 265 

geographic areas, can result in insufficient coverage of the region’s environmental conditions. 266 

Furthermore, measurements from background stations are subject to local meteorological conditions, 267 

such as temperature, humidity, and wind patterns, which can introduce uncertainties into background O3 268 

concentrations estimates (Skipper et al., 2021; Wu et al., 2017). This challenge is particularly pronounced 269 

in the Northern Hemisphere, where widespread anthropogenic emissions complicate the identification of 270 

truly “background” stations that are unaffected by human activities (Cooper et al., 2012; McDonald-271 

Buller et al., 2011; Skipper et al., 2021; Vingarzan, 2004). 272 

Despite its limitations, the in situ measurement estimation method remains an indispensable tool 273 

for estimating background O3 concentrations. For instance, Vingarzan (2004) reported that background 274 

O3 concentration in the Northern Hemisphere rose from approximately 10 ppb before the Industrial 275 

Revolution to 25-40 ppb by the 2000s, corresponding to an annual growth rate of 0.5-2 %. Similarly, 276 

Akimoto et al. (2015) found background O3 concentrations ranging from 60 to 70 ppb in Japan’s Tokyo 277 

and Fukuoka metropolitan areas between 1990 and 2008. In southern China, Wang et al. (2009b) recorded 278 

background O3 levels of 30-40 ppb at the Hok Tsui station in Hong Kong from 1994 to 2018, with an 279 

average annual increment of 0.58 ppb. These studies demonstrate that, despite challenges in achieving 280 

complete representativeness, the in situ measurement estimation method provides valuable insights into 281 

regional background O3 trends and advances our understanding of the long-term impacts of both natural 282 

and anthropogenic processes on atmospheric chemistry. 283 

4.2 Statistical analysis estimation 284 

The statistical analysis estimation method uses observed O3 concentration data and applies statistical 285 

techniques to estimate regional background O3 levels (Altshuller and Lefohn, 1996; Berlin et al., 2013; 286 

Steiner et al., 2010; Wang et al., 2022). Historically, such estimations primarily relied on real-time 287 
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measurements from monitoring stations. However, limitations in the spatial and temporal coverage of 288 

monitoring networks, along with their susceptibility to local environmental factors, have constrained 289 

their ability to capture the broader regional O3 levels accurately. For example, monitoring stations 290 

situated in areas with complex terrain may yield skewed data due to topographical effects on air 291 

circulation patterns, which in turn significantly influence the distribution of O3 concentration (Wang et 292 

al., 2022). To overcome these challenges, researchers have increasingly adopted advanced statistical 293 

models that incorporate diverse observational data sources, enhancing the accuracy and reliability of 294 

background O3 estimates (Riley et al., 2023; Rizos et al., 2022). 295 

A notable advantage of statistical analysis estimation methods is their capability to process 296 

extensive datasets over long temporal scales, providing a cost-effective approach to estimating regional 297 

background O3 levels. These methods can leverage large-scale data networks, such as satellite 298 

observations or regional monitoring systems (Langford et al., 2009). However, the reliability of statistical 299 

models is heavily dependent on the quality and spatial representativeness of the input observational data. 300 

High quality data are essential to minimize biases, and the monitoring stations must be strategically 301 

distributed to represent the target region adequately. Additionally, rigorous data preprocessing is critical 302 

to mitigate the influence of external factors, such as extreme weather events, that may distort the 303 

background O3 concentrations estimates (Berlin et al., 2013; Langford et al., 2009). 304 

The commonly used statistical analysis methods include the following: 305 

4.2.1 Principal Component Analysis 306 

Principal Component Analysis (PCA) is a widely used multivariate statistical technique designed to 307 

extract key patterns from datasets containing multiple interrelated variables (Jolliffe, 2005). By 308 

transforming correlated variables into a smaller set of uncorrelated principal components, PCA 309 

effectively reduces data complexity while preserving the most significant information. In the context of 310 

atmospheric pollution, PCA has proven to be particularly useful for isolating background O3 by 311 

minimizing the influences from meteorological factors, such as temperature, humidity, and wind, as well 312 

as local airflows from urban and industrial sources. This makes PCA an invaluable tool for understanding 313 

regional air quality and estimating background O3 levels, particularly in cases where direct measurements 314 
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are confounded by local pollution or short-term meteorological variability.  315 

Despite its effectiveness, the application of PCA requires substantial computational resources, 316 

particularly when processing large datasets with high temporal and spatial resolution. Additionally, the 317 

accuracy of PCA results is highly contingent upon the availability of high-quality, long-term 318 

observational data. As emphasized by Wang et al. (2022), insufficiently robust datasets can hinder PCA’s 319 

ability to isolate the true background O3 signal, resulting in biased or unreliable estimates.  320 

Langford et al. (2009) applied PCA to analyze regional background O3 concentrations in Texas from 321 

August to October 2006. Their analysis revealed that the first principal component accounted for 322 

approximately 84 % of the variance in the O3 data, strongly indicating its relevance as a proxy for 323 

background O3 levels. The estimated background O3 concentrations at monitoring stations across Texas 324 

ranged from 15 to 75 ppb, with higher values typically observed in rural areas with minimal local 325 

pollution. Similarly, Suciu et al. (2017) and Berlin et al. (2013) employed PCA to estimate background 326 

O3 levels in Houston, Texas, reporting concentrations between 29 and 50 ppb. In China, Liang et al. 327 

(2018) and Wang et al. (2022) applied PCA to estimate background O3 concentrations, which ranged 328 

from 35 to 70 ppb in the Yangtze River Delta region in May 2016 and from 30 to 75 ppb in Shandong 329 

Province between 2018 and 2020. These findings underscore the robustness of PCA in estimating 330 

background O3 levels and highlight its versatility across diverse geographical regions, including both 331 

developed and developing regions worldwide. 332 

4.2.2 K-means clustering 333 

K-means clustering is an unsupervised, iterative machine-learning algorithm widely employed for 334 

grouping data, such as O3 concentrations, meteorological parameters, and other environmental factors, 335 

based on shared characteristics (Riley et al., 2023). Its primary strength lies in the ability to discern 336 

patterns within large and complex datasets by clustering observations with similar attributes. Clusters 337 

with minimal anthropogenic influence are often interpreted as representative of background O3 338 

concentrations. These clusters, typically defined by low pollutant levels or specific meteorological 339 

conditions, facilitate the identification of periods or locations where regional background O3 can be 340 

reliably assessed (Riley et al., 2023; Zohdirad et al., 2022).  341 
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The computational efficiency of K-means clustering makes it particularly suitable for large-scale 342 

studies, as it can simultaneously analyze multiple variables influencing O3 variability, such as 343 

temperature, humidity, and wind patterns. This capability to manage multivariate data enables K-means 344 

to derive meaningful insights from complex datasets, which is especially useful in evaluating background 345 

O3 in regions with diverse environmental conditions. For example, Riley et al. (2023) applied K-means 346 

clustering to estimate background O3 concentrations in eastern Australia from 2017 to 2022. Their 347 

analysis revealed an average background O3 concentration of 28.5 ppb, with a decadal increase of 1.8 348 

ppb, reflecting the global trend of rising background O3 levels. 349 

Despite its utility, the effectiveness of K-means clustering is highly dependent on the quality of 350 

input data. The algorithm is sensitive to noise, outliers, and inconsistencies, which can undermine the 351 

reliability of its results. For example, extreme weather events or episodic pollution spikes can distort the 352 

clustering process, leading to inaccurate estimations of background O3. Consequently, high-quality, well-353 

preprocessed datasets are essential to ensure robust and reliable outcomes. Furthermore, K-means 354 

clustering is a descriptive rather than a causa technique, meaning it identifies associations between 355 

variables but does not elucidate the underlying physical or chemical mechanisms of O3 formation 356 

(Govender and Sivakumar, 2020; Ning et al., 2024; Riley et al., 2023). To mitigate these limitations and 357 

enhance the accuracy of background O3 estimates, K-means clustering can be integrated with other 358 

complementary analytical methods, combining its descriptive power with approaches that provide deeper 359 

causal understanding (Riley et al., 2023). 360 

4.2.3 TCEQ method  361 

The Texas Commission on Environmental Quality (TCEQ) method, based on O3 monitoring data from 362 

background regions, has been widely adopted in Texas, the United States, as a reliable approach for 363 

estimating regional background O3 levels (Nielsen-Gammon et al., 2005). This approach defines regional 364 

background O3 as the minimum value within the maximum daily 8-hour average (MDA8) O3 across all 365 

monitoring stations in a given area, effectively representing the lowest O3 levels unaffected by local 366 

emissions (Wu et al., 2017). By focusing on these minimum values over an extended period, the TCEQ 367 

method isolates background concentrations, which are crucial for understanding regional air quality and 368 
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evaluating long-term trends in O3 pollution.  369 

Compared to more complex statistical methods such as PCA, the TCEQ method is simpler to 370 

implement and often yields more consistent and interpretable results. However, it is not without 371 

limitations. The method is sensitive to meteorological variability, which can lead to temporary spikes or 372 

drops in O3 concentrations, potentially affecting accuracy. Additionally, the TCEQ method requires a 373 

dense network of monitoring stations to accurately represent regional background O3 levels, as sparse 374 

monitoring coverage may fail to capture true background concentrations (Wang et al., 2022; Wu et al., 375 

2017).  376 

Despite these limitations, the TCEQ method has provided valuable insights into background O3 377 

levels across various regions. For instance, Berlin et al. (2013) and Langford et al. (2009) used this 378 

method to estimate background O3 concentrations during high-O3 periods (May-October) in Texas 379 

between 2000 and 2012. Their estimates ranged from 25 to 45 ppb and 40 to 80 ppb, respectively. Beyond 380 

the United States, the TCEQ method has been applied in diverse geographical regions, further 381 

underscoring its utility. For example, Xue et al. (2014) applied the TCEQ method to estimate background 382 

Ox (O3 + NO2) concentrations in Hong Kong from 2002 to 2013, reporting an average Ox concentration 383 

of 54 ppb with an annual increase of 0.52 ± 0.55 ppb yr-1, highlighting the growing trend of background 384 

O3 pollution in urbanized regions of Asia. Similarly, Wang et al. (2022) estimated background O3 385 

concentrations in Shandong Province, China, to average 31.4 ppb from 2018 to 2020. These findings 386 

demonstrate that the TCEQ method is adaptable across different geographical contexts and provides 387 

robust background O3 estimates that can inform air quality management strategies and policymaking. 388 

4.2.4 O3-NOz intercept method  389 

The O3-NOz intercept method is an approach for estimating background O3 concentrations by 390 

establishing the linear relationship between O3 concentrations and its precursors (Altshuller and Lefohn, 391 

1996; Hirsch et al., 1996; Yan et al., 2021). In this approach, NOz is defined as the difference between 392 

NOy (the total reactive nitrogen species, including nitric acid and peroxy nitrates) and NOx (which 393 

comprises NO and NO2). NOz serves as an indirect indicator of background O3 level, based on the 394 

assumption that it reflects the presence of O3-producing precursors in the atmosphere. Through 395 
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regression analysis, O3 levels are extrapolated to the intercept where NOz equals zero, representing an 396 

approximation of background O3 concentrations unaffected by local emissions and photochemical 397 

influences.  398 

One of the key strengths of this method lies in its simplicity, as it requires only reliable 399 

measurements of O3, NOx, and NOy without necessitating extensive observational networks. However, 400 

the method’s validity depends heavily on the assumption of a linear relationship between O3 and NOz, 401 

which may not hold under all atmospheric conditions. For instance, photochemical processes, such as 402 

the formation of secondary pollutants, meteorological variability (e.g., wind, temperature), and local 403 

environmental factors can introduce non-linearities into the O3-NOz relationship, potentially impacting 404 

the accuracy of the estimates. Additionally, the method’s precision is highly sensitive to the quality of 405 

O3, NOx, and NOy measurements, as inaccuracies in these data can result in significant biases when 406 

estimating background O3 levels.  407 

Several studies have applied the O3-NOz intercept method to estimate background O3 concentrations 408 

in various regions, providing valuable insights into its efficacy and limitations. For example, Hirsch et 409 

al. (1996) applied this method at Harvard Forest in the United States, estimating background O3 410 

concentrations of 40 ppb in May and 25 ppb in September. Similarly, Yan et al. (2021) applied the method 411 

in the southeastern United States during the summer of 2013, estimating background O3 concentrations 412 

of 29.8 ppb in a region influenced by both local emissions and regional transport of pollutants. However, 413 

Yan et al. (2021) noted that the method’s accuracy could be compromised in areas with high rates of 414 

nitric acid (HNO3) deposition. Elevated HNO3 deposition sequesters reactive nitrogen compounds at the 415 

surface, potentially masking near-surface O3 levels and leading to overestimations of background O3 416 

concentrations.  417 

To address these limitations, Yan et al. (2021) proposed a modified version of the O3-NOz method, 418 

referred to as the 1-σ O3-NOz method. This refinement involved excluding regions with high HNO3 419 

deposition rates and minimizing the influence of regional emissions through improved data selection 420 

criteria. The modified method estimated background O3 concentration at 21.3 ppb, approximately 8 ppb 421 

lower than the traditional O3-NOz method, demonstrating enhanced reliability under conditions with 422 
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elevated nitrogen deposition. This modification highlights the importance of accounting for nitrogen 423 

deposition dynamics to improve the robustness of background O3 estimations. 424 

4.2.5 O3-CO-HCHO response method 425 

Cheng et al. (2018) introduced an innovative approach for estimating background O3 concentrations by 426 

using carbon monoxide (CO) and formaldehyde (HCHO) as chemical indicators to trace the production 427 

and consumption of O3. This method integrates the chemical reaction dynamics between O3, CO, and 428 

HCHO, resulting in a rapid-response O3 estimator. This approach was specifically designed to enhance 429 

the efficiency and accuracy of O3 estimation by leveraging the dynamic chemical processes that influence 430 

O3 levels. Building upon this foundation, Yan et al. (2021) proposed the O3-CO-HCHO approach, which 431 

refines the original concept by eliminating the influence of both anthropogenic and natural emissions of 432 

O3 precursors, enabling a more accurate estimation of background O3 concentrations.  433 

The O3-CO-HCHO method is particularly advantageous due to its applicability to both 434 

observational data and model outputs, offering robust results across a broad range of conditions. The 435 

method is governed by the following key equations:  436 

,    (2) 437 

,    (3) 438 

Here,  ,  ,  . The terms “anthro”, “bio”, “total”, and 439 

“back” refer to anthropogenic sources, biogenic sources, total sources, and background sources, 440 

respectively. 441 

In model-based applications, tracer simulations provide the necessary inputs to determine the 442 

unknown variables on the right-hand side of Eq. (3), facilitating the estimation of background O3 443 

concentrations. This capability makes the method particularly valuable in model-based studies, where 444 

emissions sources and their contributions are explicitly tracked. Conversely, when applied to 445 

observational data, distinguishing the origins of various species presents challenges. Empirical methods 446 

can be employed to approximate missing variables, combining observational data with nonlinear 447 

regression analysis, as described in Eq. (2). This enables the estimation of background O3 concentrations 448 
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even in the absence of precise source-specific information. 449 

However, it is important to note that the chemical interactions among O3, CO, and HCHO are 450 

inherently nonlinear and influenced by regional geography, meteorological conditions, and other 451 

environmental factors. These complexities may limit the method’s accuracy, as its performance is highly 452 

context dependent. (Cheng et al., 2018; Yan et al., 2021). Specifically, the current methodology is most 453 

effective in regions minimally affected by anthropogenic pollution, where HCHO is primarily formed 454 

via the oxidation of biogenic isoprene, such as in the southeastern United States. A limitation of this 455 

method is the difficulty of disentangling contributions from natural and anthropogenic O3 precursors. 456 

Nevertheless, Yan et al. (2021) proposed integrating the O3-CO-HCHO method with an “anthropogenic-457 

source-zeroing” scenario, which can estimate the impact of emissions from natural sources. 458 

Applying the O3-CO-HCHO method, Yan et al. (2021) estimated the background O3 concentration 459 

in the inland regions of the southeastern United States during the summer of 2013 to range between 10-460 

15 ppb, approximately 5-10 ppb lower than estimates derived from other methods. This refinement 461 

highlights the utility of the O3-CO-HCHO method for achieving more accurate assessments of zero-462 

chemical-signature background O3 concentrations. 463 

4.2.6 Percentile method 464 

The percentile method is a widely adopted statistical analysis estimation approach for estimating regional 465 

background O3 concentrations, offering a straightforward and practical alternative to complex modeling 466 

techniques (Berlin et al., 2013; Jenkin, 2008). This method involves analyzing O3 concentration data 467 

over a specific time period and selecting a particular percentile to represent the background O3 levels. 468 

The selected percentile is assumed to reflect minimal O3 concentrations that are largely unaffected by 469 

local pollution sources, thereby serving as a proxy for regional background O3 concentrations.  470 

A key advantage of the percentile method lies in its simplicity and ease of implementation, making 471 

it particularly suitable for regions with limited monitoring networks or computational resources required 472 

for advanced modeling techniques. However, the reliability and accuracy of this method are highly 473 

dependent on the selection of the appropriate percentile value, which can vary significantly depending 474 

on regional characteristics such as emissions patterns, meteorological conditions, and topographical 475 
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features (Cooper et al., 2012). Consequently, the chosen percentile may exhibit significant variability 476 

across different geographical regions, potentially affecting the consistency of background O3 estimates.  477 

For example, Akimoto et al. (2015) proposed using the 2nd percentile of MDA8 O3 concentrations as a 478 

suitable measure of background O3 levels in Japan, capturing low concentrations unaffected by local 479 

anthropogenic emissions during high-O3 episodes. In contrast, Yan et al. (2021) applied the 5th percentile 480 

to estimate background O3 concentrations in the southeastern United States. Similarly, Cooper et al. 481 

(2012) and Wilson et al. (2012) advocated for the use of the 5th percentile in their studies of background 482 

O3 levels in the United States and Europe, respectively, suggesting it achieves a balance between 483 

accurately representing background O3 levels and accounting for regional variations in pollutant 484 

emissions. 485 

4.2.7 Temperature-ozone relationship method 486 

The temperature-ozone relationship method estimates background O3 contributions by analyzing the 487 

correlation between O3 concentrations and temperature (Mahmud et al., 2008). Generally, O3 488 

concentrations increase with rising temperatures, as elevated temperatures enhance the photochemical 489 

reactions that produce O3. However, within a specific temperature range, O3 concentrations tend to 490 

stabilize due to the equilibrium between O3 production and destruction processes. These stabilized O3 491 

levels, typically observed during periods of relatively stable meteorological conditions, are often 492 

regarded as indicative of regional background O3 concentrations, reflecting natural influence rather than 493 

anthropogenic emissions (Mahmud et al., 2008; Sillman and Samson, 1995; Steiner et al., 2010).  494 

This method offers several advantages, primarily its simplicity and reliance on widely available 495 

observational meteorological and O3 concentrations data. Given the accessibility of temperature datasets, 496 

the temperature-ozone relationship method is particularly effective for conducting large-scale spatial and 497 

temporal analyses. Its versatility is demonstrated by its applicability across diverse geographic regions 498 

and climatic conditions, ranging from temperate zones to tropical climates, where temperature plays a 499 

key role in driving O3 dynamics.  500 

Despite its practicality, the method has certain limitations. A primary challenge is the variability in 501 

the temperature range corresponding to stable O3 levels, which differs among regions due to local 502 
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meteorological and geographical factors. Extreme meteorological conditions, such as high humidity or 503 

strong winds, can disrupt the temperature-ozone correlation, reducing the reliability of this method in 504 

such scenarios. Moreover, O3 formation is influenced by multiple factors, including solar radiation, 505 

precursor emissions, and atmospheric chemistry, making temperature an incomplete predictor of O3 506 

dynamics. The method’s accuracy also depends on the quality and temporal resolution of the data used; 507 

short-term datasets, such as those based on monthly averages, can introduce significant uncertainties due 508 

to O3’s sensitivity to short-term meteorological fluctuations and emission variations. This limitation 509 

underscores the importance of using long-term, high-resolution datasets to derive more reliable 510 

temperature-ozone relationships (Li et al., 2020; Liao et al., 2021). Incorporating seasonal and regional 511 

variations in temperature and O3 formation processes can further enhance the method’s accuracy. 512 

Despite these challenges, the temperature-ozone relationship method has been successfully applied 513 

in several studies to estimate background O3 concentrations. For example, Steiner et al. (2010) applied 514 

this method to estimate the average background O3 concentrations in California during the summer 515 

months (June-October) between 1980 and 2005, finding values ranging from 30 to 40 ppb. Similarly, 516 

Chen et al. (2022) used this method to assess background O3 levels in China from 2013 to 2019, reporting 517 

concentrations of 35-40 ppb during clean seasons and 50-55 ppb during O3-polluted seasons. 518 

4.2.8 Nocturnal ozone concentration method 519 

The nocturnal O3 concentration method leverages the relatively stable O3 levels observed during 520 

nighttime, when photochemical reactions driven by sunlight are absent, making it a valuable approach 521 

for estimating regional background O3 levels (Chan et al., 2003). At night, O3 levels generally remain 522 

constant or exhibit minimal fluctuations, as they are primarily governed by the equilibrium between O3 523 

production and destruction through reactions with NOₓ and other atmospheric components. However, 524 

this method is not without its challenges. A key limitation arises from the titration reaction between O3 525 

and NO, which produces NO2 and depletes ambient O3 levels. This phenomenon, known as O3 titration, 526 

can result in underestimation of true background O3 concentrations, particularly in areas with elevated 527 

NO emissions (Akimoto et al., 2015; Itano et al., 2007; Shin et al., 2012).  528 

To mitigate the impact of O3 titration, researchers have introduced adjustments to nocturnal O3 529 
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estimates by incorporating a “total O3” concentration, denoted as , which serves as a proxy for 530 

background O3 levels. The “total O3” is calculated using the following equations: 531 

                                           (4) 532 

Here, , , and represent the mixing ratios of O3, NO2, and NOx, 533 

respectively. The parameter  accounts for the fraction of NO₂ in NOₓ from primary emissions, with a 534 

typical value of  used in most studies (Akimoto et al., 2015; Itano et al., 2007; Shin et al., 2012). 535 

However, Wang et al. (2009b) suggested a lower value of  , introducing variability in the 536 

estimated . This adjustment helps to compensate for the effects of NO titration, yielding a more 537 

accurate representation of regional background O3 levels. 538 

Despite its utility, the nocturnal O3 concentration method is subject to inherent limitations. A 539 

primary drawback is its reliance on observational data, which can be influenced by local variations in 540 

emissions and meteorological conditions, thereby complicating the estimation process.  541 

In an applied context, Chen et al. (2022) used the nocturnal O3 concentration method to estimate 542 

background O3 levels across China during the period from 2013 to 2019. Their analysis revealed that 543 

background O3 concentrations ranged between 25 and 38 ppb during clean seasons and between 35 and 544 

49 ppb during O3-polluted seasons. 545 

4.3 Numerical modeling estimation 546 

The numerical modeling estimation method, which uses atmospheric chemistry and transport models 547 

such as GEOS-Chem, WRF-Chem, and CMAQ, is widely employed to simulate the formation, 548 

transportation, and variability of regional background O3 concentrations. These models offer several 549 

distinct advantages by incorporating a comprehensive array of atmospheric processes, including 550 

photochemical reactions, vertical mixing, advection, and the transport of pollutants across various spatial 551 

and temporal scales. By accounting for the intricate interactions among emissions, meteorological 552 

conditions, and atmospheric chemistry, numerical models provide a more robust and accurate 553 

representation of regional background O3 levels compared to in situ measurement estimation or statistical 554 

analysis estimation methods alone. Additionally, numerical models can be customized to align with 555 

specific research objectives through adjustments to chemical mechanisms and parameterization schemes, 556 
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rendering them adaptable to diverse regions and temporal scales.  557 

A notable strength of numerical models lies in their ability to differentiate the contributions of 558 

various emission sources to regional O3 concentrations (Jaffe et al., 2018; Thompson, 2019; Zhang et al., 559 

2011). This capability sets them apart from in situ measurement estimation and statistical analysis 560 

estimation approaches, which typically lack the granularity to isolate the relative contributions of natural 561 

versus anthropogenic emissions. However, numerical modeling estimation also presents significant 562 

challenges. These models are computationally intensive, requiring substantial resources, especially when 563 

simulating extensive domains or prolonged time periods. Moreover, their accuracy depends heavily on 564 

the quality of input data, such as emission inventories, meteorological conditions, and assumptions 565 

regarding physical and chemical processes, which can introduce uncertainties in estimated O3 566 

concentrations (Dolwick et al., 2015; Guo et al., 2018; Hogrefe et al., 2018; Jaffe et al., 2018). 567 

Numerical models typically estimate regional background O3 concentrations using two primary 568 

approaches: the emission scenario method and the tracer method (Fiore et al., 2002a). The emission 569 

scenario method employs three-dimensional air quality models, such as GEOS-Chem, MOZART, WRF-570 

Chem, and CMAQ, to simulate background O3 levels by conducting perturbation experiments where 571 

local anthropogenic emissions are reduced or set to predefined values. This approach enables the isolation 572 

of local emissions’ contributions to regional background O3 levels (Zhang et al., 2011; Li et al., 2018; Lu 573 

et al., 2019; Pfister et al., 2013). In contrast, the tracer method uses chemical tracers to track the transport 574 

and transformation of emissions, offering an alternative approach to estimating background O3 575 

concentrations. Models such as CMAQ-ISAM and CAMx-OSAT, developed by the United States 576 

Environmental Protection Agency (EPA), incorporate tracer methods to estimate regional background O3 577 

concentrations (Lefohn et al., 2014; Li et al., 2012; Reid et al., 2008). 578 

Although both methods have their strengths, studies have highlighted discrepancies in O3 estimates 579 

depending on the approach employed (Jaffe et al., 2018; Skipper et al., 2021). For example, Emery et al. 580 

(2012) found that the CAMx model generally produced higher background O3 concentrations in the 581 

United States compared to GEOS-Chem, with CAMx showing a higher correlation with observational 582 

data, especially at remote stations and during high-O3 episodes. Conversely, GEOS-Chem demonstrated 583 
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greater accuracy in capturing seasonal mean O3 concentrations in rural areas. Similarly, Dolwick et al. 584 

(2015) compared the tracer and emission scenario methods using CAMx and CMAQ models. Their 585 

analysis revealed consistent estimates of background O3 concentrations in suburban United States areas 586 

across both methods. However, in urban areas, the tracer method yielded lower background O3 estimates 587 

than the emission scenario method, indicating a substantial influence of local emissions on O3 588 

concentrations in densely populated regions. Equally, Fiore et al. (2014) reported differences in 589 

background O3 concentrations between GEOS-Chem and GFDL-AM3 models, with variations ranging 590 

from 1 to 10 ppb depending on region, season, and altitude.  591 

Numerical modeling estimation has been extensively applied to estimate global and regional 592 

background O3 concentrations. For example, using the global model GEOS-Chem, Emery et al. (2012) 593 

and Zhang et al. (2011) estimated average background O3 concentration in the United States from March 594 

to August 2006, ranging from 20 to 45 ppb, with 27 ± 8 ppb in low-altitude areas and 40 ± 7 ppb in high-595 

altitude areas. Guo et al. (2018) reported annual variation of up to 15 ppb in regional background O3 596 

concentration in the United States between June and August from 2004 to 2012. Meanwhile, regional 597 

models such as CAMx and CMAQ yielded background O3 estimates of 25 to 50 ppb in the United States 598 

between March and August 2006 (Emery et al., 2012). In China, Sahu et al. (2021) found background O3 599 

concentrations exceeded 22 ppb in 2015. 600 

4.4 Integrated method estimation 601 

The three methods discussed above each possess distinct advantages and limitations, contributing to 602 

uncertainties in estimating regional background O3 concentration. Given these challenges, researchers 603 

have increasingly turned to integrated method estimation methods to improve the accuracy and reliability 604 

of these estimations.  605 

For instance, Dolwick et al. (2015) improved model-based estimates of background O3 by 606 

comparing observed and simulated O3 concentrations. Their analysis of rural areas in the western United 607 

States during April to October 2007 reported background O3 concentrations ranging from 40 to 45 ppb, 608 

with the lowest concentrations observed along the Pacific coast, ranging from 25 to 35 ppb.  609 

Similarly, Sun et al. (2024) refined estimates by treating model biases as spatial functions, 610 
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optimizing regional background O3 estimations. Based on this methodology, Skipper et al. (2021) 611 

extended the methodology by incorporating both spatial and temporal functions to account for variations 612 

driven by regional background O3 and anthropogenic emissions. This revised approach estimated an 613 

average background O3 concentration of approximately 33 ppb for the United States in 2017, with peak 614 

values around 38 ppb. Notably, this adjustment improved the consistency of estimates by 28 % compared 615 

to the unadjusted model, demonstrating the utility of integrated method in refining atmospheric models. 616 

The rapid advancement of Machine Learning (ML) techniques has further facilitated the integration 617 

of these technologies with traditional methods for estimating regional background O3 concentrations. For 618 

example, Hosseinpour et al. (2024) developed a Multivariate Linear Regression (MVLR) model and a 619 

Random Forest (RF) based ML algorithm to adjust model-derived background O3 concentrations. While 620 

the MVLR model follows an adjustment method akin to that of Skipper et al. (2021), the RF-ML 621 

algorithm employs the Shapley Additive Explanations (SHAP) method to evaluate the relative 622 

importance of each input variable. The RF-ML model, trained using k-fold cross-validation, 623 

demonstrated superior predictive accuracy. Hosseinpour et al. (2024) showed that the RF-ML algorithm 624 

produced results most consistent with those from the in situ measurement estimation method, 625 

outperforming those from the original CAMx model, MVLR adjustments, and two other ML algorithms. 626 

Utilizing this methodology, they estimated background O3 concentrations in 13 urban areas of the United 627 

States during April-June and July-September 2016 to range from 31-46 ppb and 27-45 ppb, respectively. 628 

This finding underscore the potential of ML algorithms to enhance model-based background O3 estimates 629 

by capturing nonlinear relationships and complex variable interactions (Breiman, 2001; Kashinath et al., 630 

2021). 631 

Overall, integrated method estimation methods, particularly those integrated with machine learning 632 

techniques, represent a significant advancement in estimating regional background O3 concentrations. 633 

These approaches not only improve the accuracy and robustness of estimates but also provide valuable 634 

insights into the complex dynamics of O3 formation and transport. By combining observational data, 635 

statistical adjustments, and advanced modeling techniques, researchers can achieve a more 636 

comprehensive understanding of regional O3 levels and their temporal variations. 637 
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 638 
Figure 3: Summary of the advantages, limitations, and applicability of different estimation methods for 639 
background O3. 640 

5 Comprehensive assessment of background ozone in China: patterns, trends, sources, and global 641 
comparisons 642 

5.1 Regional patterns of background ozone in China 643 

Figure 4 presents the average background O3 concentrations across China and its various regions. On a 644 

national scale, the average background O3 concentration is 40.3 ± 11.9 ppb, accounting for 77 % of the 645 

MDA8 O3 concentration. Notable regional variability in background O3 concentrations is observed, 646 

highlighting the differential impacts of local meteorological conditions, pollutant emissions, and 647 

geographic characteristics.  648 

Among the regions, Northwest China (NWC) stands out with the highest background O3 649 

concentrations, reaching 48.2 ± 8.3 ppb, which accounts for 96 % of the MDA8 O3 concentration. This 650 

elevated concentration is attributed to several interrelated factors. First, strong solar radiation and arid 651 

atmospheric conditions enhance photochemical reactions, accelerating O3 formation. He et al. (2021) 652 

demonstrated that abundant sunshine and dry conditions significantly increase O3 production due to the 653 

intensified photolysis of precursor compounds. Furthermore, the high altitude and unique surface 654 

characteristics of Northwest China promote strong daytime atmospheric convection, facilitating the 655 

downward transport of O3 from the upper atmosphere to the surface levels (Ding and Wang, 2006; Liu 656 

et al., 2019; Ma et al., 2005; Nie et al., 2004). Additionally, the relatively low anthropogenic emissions 657 
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result in fewer precursors like NOx and VOCs, thereby minimizing rapid fluctuations in O3 levels. The 658 

weaker nocturnal O3 depletion, caused by limited O3 scavenging from sparse emissions and lower 659 

nighttime temperatures, further amplifies baseline O3 concentrations (Nie et al., 2004; Qin et al., 2023; 660 

Xu et al., 2020).  661 

Southwest China (SWC), alongside with the urban clusters of East China (EC) and North China 662 

(NC), also exhibits higher background O3 concentrations, averaging 38.7 ± 10.8 ppb, 38.4 ± 13.0 ppb, 663 

and 37.7 ± 13.5 ppb, respectively. These concentrations account for 84 %, 66 %, and 71 % of the MDA8 664 

O3 concentration in each respective region. In Southwest China, regional pollutant transport plays a 665 

significant role. During the spring, prevailing winds carry pollutants such as NOx and VOCs from 666 

Southeast Asia, intensifying local O3 levels (Ye et al., 2024). Summer conditions - characterized by high 667 

humidity, elevated temperatures, and intense solar radiation - further amplify photochemical O3 668 

formation (Chen, 2020). The region’s complex topography, including mountainous areas and plateaus, 669 

also contributes to localized O3 accumulation. For instance, the Sichuan Basin, with its basin - like terrain, 670 

impedes air mass dispersion, leading to pollutants entrapment and prolonged O3 buildup (Hu et al., 2019). 671 

In contrast, East China and North China are heavily influenced by high industrial and vehicular emissions, 672 

which release significant quantities of NOx and VOCs. The precursors undergo photochemical reactions 673 

under intense sunlight and elevated summer temperatures, resulting in higher O3 levels. Moreover, the 674 

East Asian Summer Monsoon (EASM) facilitates the transport of O3 and its precursors from low-latitude 675 

regions, such as South China, to higher latitudes, exacerbating O3 pollution during the monsoon season 676 

(Gao et al., 2005; Liu et al., 2019, 2021; Sun et al., 2016; Xu et al., 2011, 2020)  677 

The background O3 concentrations in South China (SC), Central China (CC), and Northeast China 678 

(NEC) are relatively low compared to other regions of China, with values of 35.5 ± 8.0 ppb, 33.2 ± 10.9 679 

ppb, and 33.0 ± 5.7 ppb, respectively. These concentrations account for 71 %, 57 %, and 67 % of the 680 

MDA8 O3 in each corresponding region. In South China, the relatively low background O3 681 

concentrations can be primarily attributed to the frequent rainfall and high humidity, which facilitate the 682 

removal of O3 precursors such as NOx and VOCs, thereby suppressing O3 formation (He et al., 2021). 683 

Although BVOCs emissions are relatively high in this region due to abundant vegetation and elevated 684 
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temperatures, their impact on O3 formation is less pronounced compared to regions like North China. 685 

This is because anthropogenic emissions, such as vehicular exhaust and industrial discharges, typically 686 

amplify the contribution of BVOCs on O3 formation. In the absence of significant anthropogenic 687 

pollution, the role of BVOCs in O3 formation remains relatively limited (Ye et al., 2024). Moreover, the 688 

mixed topography of South China, characterized by a combination of hilly terrain and plains, promotes 689 

air mixing and disperse O3, preventing its prolonged accumulation at the surface (Wang et al., 2011). 690 

In Central China (CC), the lower background O3 concentrations are linked to the region’s inland 691 

locations, which reduces its exposure to oceanic influences and transboundary pollutant transport. The 692 

absence of strong maritime airflow limits the import of O3 precursors, while frequent rainfall during the 693 

warmer months helps remove these precursors from the atmosphere, further suppressing O3 formation 694 

(Sahu et al., 2021). Anthropogenic emissions, primarily from vehicular exhaust, industrial discharges, 695 

and solvent usage, constitute the dominant sources of O3 in this region (Zeng et al., 2018). Consequently, 696 

the relative contribution of background O3 is lower, as anthropogenic emissions play a more substantial 697 

role in O3 formation. The combination of moderate meteorological conditions and limited transport of 698 

O3 precursors contributes to the observed lower background O3 levels in Central China. In Northeast 699 

China, the lower background O3 concentration can be attributed to a prolonged period of low temperature, 700 

which significantly reduces the rate of photochemical reaction. Additionally, the region experiences 701 

strong summer air convection and substantial precipitation, both of which further inhibit O3 generation 702 

(Chen, 2024; Xu et al., 2020). 703 
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 704 
Figure 4: Spatial distribution of background O3 concentrations (1994-2020) and MDA8 O3 concentrations 705 
across various regions of China. MDA8 O3 concentrations for the seven regions (2013 to 2018) were sourced 706 
from He et al. (2023). The locations of 33 background monitoring stations are indicated with red dots. The 707 
seven regions include Northeast China (NEC), North China (NC), East China (EC), Central China (CC), 708 
Northwest China (NWC), Southwest China (SWC), and South China (SC).  709 

5.2 Comparative evaluation of background ozone concentration estimates using diverse methods 710 

Figure 5 presents a comparison of average background O3 concentrations across China, as estimated 711 

using various methods. Among these, the in situ measurement estimation method remains the most 712 

widely utilized, as it directly relies on observational data from established monitoring networks. In this 713 

study, data from 33 background monitoring stations were compiled (Fig. 4), with detailed information 714 

on their locations and characteristics provided in Table S3. In contrast, the other three methods, 715 

particularly the integrated method estimation approach, have been less frequently applied in research, 716 

reflecting their higher reliance on assumptions and advanced modeling techniques.  717 

The estimated background O3 concentrations for China derived from the four methods reveal 718 

relatively small differences in average values. The in situ measurement estimation method and statistical 719 

analysis estimation method yield the highest average concentration, with values of 40.6 ± 12.0 ppb and 720 

39.9 ± 11.5 ppb, respectively, followed by the numerical modeling estimation method (36.5 ± 12.6 ppb). 721 

The integrated method estimation method, which integrates observational data with modeling outputs, 722 
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reports the lowest estimate (34.0 ± 2.7 ppb), approximately 6 ppb lower than those from in situ 723 

measurement estimation and statistical analysis estimation methods.  724 

Despite the similar average values, substantial discrepancies exist among the various methods used 725 

to estimate background O3 concentrations, underscoring the significant influence of methodological 726 

differences. The in situ measurement estimation reveals a particularly wide variability, with estimated 727 

background O3 concentrations ranging from approximately 14 ppb to as high as 85 ppb. This broad range 728 

reflects the substantial influence of localized factors, such as topography, climatic conditions, and 729 

anthropogenic emissions, on observational data. In comparison, statistical analysis estimation and 730 

numerical modeling estimation methods yield relatively consistent results, although the difference 731 

between the maximum and minimum estimated background O3 concentration for both methods reach 60 732 

ppb. Notably, more than 80 % of the estimated background O3 concentrations fall within the range of 25-733 

53 ppb, suggesting a reasonable degree of agreement between the two methods. The consistency is likely 734 

attributable to the reliance on long-term data trends and calibrated algorithms, which effectively reduce 735 

the impact of extreme values while capturing broader patterns in O3 behavior. The integrated method 736 

estimation method, by integrating observational data, statistical analysis, and numerical results, exhibits 737 

the least variability. Background O3 estimates from this approach are confined to a narrower range of 28-738 

39 ppb, reflecting its ability to reconcile the inherent variability in observational data with the structured 739 

consistency of numerical models. This reduced uncertainty enhances the method’s reliability for both 740 

scientific research and policy applications. 741 

These differences highlight the complexities and challenges associated with estimating background 742 

O3 concentrations using diverse methodologies. The variability observed across methods arises from 743 

several key factors, including disparities in data sources, underlying assumptions, and the 744 

parameterization of physical and chemical processes (Jaffe et al., 2018; Skipper et al., 2021; Wang et al., 745 

2022; Yan et al., 2021). For instance, the in situ measurement estimation method is directly influenced 746 

by local meteorological and emission conditions, while the numerical modeling estimation method is 747 

subject to uncertainties in simulating processes such as natural emissions, transboundary transport, and 748 

photochemical reactions. Although the integrated method estimation method benefits from leveraging 749 
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both observations and modeled outputs, it may introduce additional uncertainty through integration 750 

techniques and sensitivity to the input data quality. 751 

The discrepancies among these methods emphasize the need for further refinement and rigorous 752 

cross-validation to improve the accuracy and reliability of background O3 concentration estimates. Future 753 

efforts should prioritize the expansion and enhancement of observational networks, the refinement of 754 

model parameterization schemes, and the development of advanced integrated method frameworks. Such 755 

advancements are essential for narrowing the discrepancies among different estimation methods, 756 

providing consistent and reliable background O3 estimates, and enabling more effective air quality 757 

management and policy formulation. 758 

 759 
Figure 5: Estimated regional average background O3 concentrations in China (1994-2020) based on multiple 760 
methods. 761 

5.3 Long-term trends and interannual variability of background ozone in China  762 

Due to the absence of long-term background O3 concentration data for other regions, Figure 6 focuses 763 

on the annual variation trends of background O3 concentrations in four major regions of China (i.e., NWC, 764 

NC, EC, and SC) during the period from 1994 to 2020. Overall, background O3 concentrations in these 765 

regions have exhibited an upward trend over the years, albeit with notable differences in growth rates 766 
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across regions. 767 

Notably, Northwest China (NWC) exhibited the most pronounced increase in background O3 768 

concentration, with an average annual growth rate of 0.32 ppb yr-1 (r2=0.68, p<0.01), as shown in Fig. 769 

6(a). This marked growth is likely driven by the stratospheric-tropospheric exchange and regional 770 

transport of O3 precursors, as suggested by Xu et al. (2018) and Zhang et al. (2020). Previous studies 771 

have highlighted the significant role of long-range transport of air pollutants in this region, contributing 772 

to elevated O3 levels. In addition, shifts in atmospheric circulation and an increase in the frequency of 773 

stratospheric-tropospheric exchange events further amplify O3 concentration in this region (Xu et al., 774 

2016, 2020; Xue et al., 2011).  775 

Following, North China (NC) and East China (EC) also experienced notable increases in 776 

background O3 concentration, each with an average annual growth rate of 0.26 ppb yr-1, as shown in Fig. 777 

6(b) and Fig. 6(c). However, a statistically significant upward trend was observed in North China, where 778 

the increase passed the 0.01 confidence level. In contrast, the growth rate in East China, though 779 

comparable, did not achieve statistical significance (p>0.05), suggesting regional variability in the factors 780 

driving O3 trends. This discrepancy could be attributed to differences in urbanization levels, 781 

industrialization intensity, and meteorological conditions, which modulate the dispersion and chemical 782 

transformation of O3 precursors differently in these regions (Ma et al., 2016; Xu et al., 2020; Zhang et 783 

al., 2020). A detailed study by Ma et al. (2016) further supports these findings, reporting a higher growth 784 

rate in background O3 concentration in North China, reaching 1 ppb yr-1 (r2=0.58, p<0.01), based on data 785 

from the Shangdianzi background station. This finding highlights the intensification of regional 786 

background O3 pollution, likely driven by both local emissions and the regional atmospheric conditions 787 

conducive to O3 accumulation.  788 

In stark contrast, South China (SC) experienced the slowest growth in background O3 concentration, 789 

with an average annual increase of only 0.19 ppb yr-1 (r²=0.21, p<0.05), as shown in Fig. 6(d). This 790 

relatively modest increase may be attributed to a combination of factors, including more stable natural 791 

and anthropogenic emission sources and more effective atmospheric cleansing processes (Qin et al., 2021; 792 

Shen and Wang, 2012; Xie et al., 2022; Zhang and Zhang, 2019). For instance, the region’s comparatively 793 
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higher precipitation rates and frequent weather systems facilitate the removal of pollutants from the 794 

atmosphere, thereby moderating O3 levels.  795 

 796 
Figure 6: Annual trend of background O3 concentrations in the NWC (1994-2019), NC (2004-2020), EC (2004-797 
2020), and SC regions (1995-2020). The dashed lines represent the linear trends. 798 

5.4 Source attribution and analysis of background ozone in China 799 

The analysis above reveals that the growth characteristics of background O3 concentrations across 800 

different regions of China are influenced by the synergistic effects of multiple factors, including regional 801 

natural source emissions, cross-regional transport, stratospheric-tropospheric exchange, and local 802 

atmospheric pollutant reduction measures. These factors interact in complex and dynamic ways, resulting 803 

in significant regional and seasonal variations in background O3 levels.  804 

Natural source emissions are a key driver of background O3 levels in China, with studies 805 

consistently highlighting their substantial contribution. For example, Wang et al. (2011) and Lu et al. 806 

(2019), using the numerical model GEOS-Chem, estimated that over 70 % of regional background O3 807 

concentrations in China originate from natural emissions, including BVOCs, soil NOx, and CH4 808 

emissions and others. Among these, BVOCs exert a particularly significant impact on O3 formation. Lu 809 

et al. (2019) demonstrated that during the peak summer months of July and August in 2016-2017, BVOCs 810 

emissions contributed over 15 ppb to the background O3 in central and eastern China. Similarly, Chen et 811 
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al. (2022) emphasized that during O3 pollution seasons, BVOCs emissions dominate the increase in 812 

background O3, contributing 8-16 ppb compared to non-pollution seasons. These findings underscore the 813 

importance of incorporating the variability of natural emissions into modeling and policy frameworks, 814 

particularly in light of future climate change that may exacerbate BVOCs emissions. 815 

Long-range transport plays an equally significant role in shaping background O3 concentration 816 

across China. Several studies have shown that the influx of O3 and its precursors from other regions, 817 

including Southeast Asia, Europe, North America, India, and the Middle East, can elevate background 818 

O3 concentration in China by 2-15 ppb (Wang et al. (2011), Li et al. (2014), and Ni et al. (2018)). This 819 

influence is particularly pronounced during specific seasons when atmospheric circulation facilitates the 820 

transboundary transport of atmospheric pollutants (Ni et al., 2018; Sahu et al., 2021; Ye et al., 2024). 821 

Regional transport also significantly influences the background O3 levels in urbanized and densely 822 

populated areas. For instance, Su et al. (2013) showed that air masses originating from high altitudes, the 823 

Yangtze River Delta region, and the Pearl River Delta regions could cause spikes at the Mount Wuyi 824 

background station, with concentration reaching 62-73 ppb, far exceeding the station’s annual average 825 

of 41 ± 15.9 ppb. Similarly, Wang et al. (2009b) measured that air masses from eastern China had an 826 

average O3 concentration of 48 ppb at a background station in Hong Kong, highlighting the significant 827 

impact of inter-regional transport on coastal regions. 828 

Stratospheric-tropospheric exchange (STE) is a critical vertical transport process contributing to 829 

background O3 levels, particularly in high-altitude and northern regions of China. This process is most 830 

active during spring, when stratospheric O3 is transported downward into the troposphere (Ding and 831 

Wang, 2006; Lu et al., 2019; Xu et al., 2018). Wang et al. (2011) estimated that STE contributes 832 

approximately 7 ppb to background O3 concentrations in northern China during the spring season. 833 

Observations at the Mt. Waliguan Station on the Tibetan Plateau further support the importance of STE; 834 

Xu et al. (2018) reported that STE contributes 8-12 ppb to background O3 concentrations during spring. 835 

Lu et al. (2019) found that STE processes contribute as much as 20 ppb to background O3 concentration 836 

in western China during March and April, with an average contribution of 1.8-8.7 ppb across China from 837 

March to October. In lower-latitude regions such as the Pearl River Delta, Shen et al. (2019) demonstrated 838 
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that vertical transport processes, including STE, predominantly influence background O3 levels during 839 

spring and autumn. These findings underscore the critical role of altitude and latitude in modulating the 840 

magnitude of STE contributions. 841 

5.5 Comparative analysis of background ozone levels: insights from China and global perspectives 842 

Figure 7 presents a comparative analysis of background O3 concentrations in China and several other 843 

global regions, with a particular focus on the United States, Canada, Europe, Japan, and South Korea. 844 

On average, background O3 concentrations in China (40.3 ± 12.0 ppb) are slightly higher than those 845 

observed in the United States (35.7 ± 14.0 ppb) (Chan and Vet, 2010; Dolwick et al., 2015; Emery et al., 846 

2012; Fiore et al., 2003, 2002a; Hirsch et al., 1996; Parrish et al., 2009; Parrish and Ennis, 2019; Steiner 847 

et al., 2010; Vingarzan, 2004; Yan et al., 2021; Zhang et al., 2011) and Europe (34.2 ± 10.3 ppb) (Auvray 848 

and Bey, 2005; Brönnimann et al., 2000; Kalabokas et al., 2000; Naja et al., 2003; Parrish et al., 2009; 849 

Scheel et al., 1997; Vecchi and Valli, 1998; Vingarzan, 2004; Wilson et al., 2012). This suggests that 850 

although developed regions have made significant progress in controlling anthropogenic O3 precursors, 851 

background O3 remains a major concern due to various regional factors such as higher emissions, 852 

industrial activity, and specific atmospheric conditions (Huang et al., 2015). In contrast, background O3 853 

levels in China are significantly higher than those observed in Canada (26.9 ± 7.4 ppb) (Chan and Vet, 854 

2010; Vingarzan, 2004), which is likely due to Canada’s lower industrial activity, less dense population, 855 

and colder climate that limits the photochemical processes necessary for O3 formation. 856 

When comparing China to other East Asian regions, the background O3 concentration is slightly 857 

higher than in South Korea (38.8 ± 11.74 ppb) (Ghim and Chang, 2000; Kim et al., 2023; Lam and 858 

Cheung, 2022; Lee and Park, 2022; Yeo and Kim, 2021), but marginally lower than in Japan (45.4 ± 23.2 859 

ppb) (Akimoto et al., 2015; Lam and Cheung, 2022; Sunwoo et al., 1994; Tsutsumi et al., 1994). Detailed 860 

information on the data, including a breakdown of regional and temporal distributions, is provided Table 861 

S4. Notably, East Asian regions, including China, South Korea, and Japan, typically exhibit background 862 

O3 levels that are 3-20 ppb higher than those observed in Europe, the United States, and Canada. This 863 

regional disparity is attributable to a combination of factors, including the region’s warm climate, high 864 

solar radiation, and the presence of industrialized areas that emit large quantities of O3 precursors. These 865 
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factors collectively enhance photochemical O3 (Lee et al., 2021; Li et al., 2016; Nagashima et al., 2010; 866 

Yamaji et al., 2006). Furthermore, complex regional airflow patterns, including transboundary transport 867 

and local atmospheric dynamics, promote the accumulation of background O3, especially in densely 868 

populated urban centers. These findings underscore the critical need for regional cooperation in 869 

addressing O3 pollution in East Asia, where transboundary influences and shared atmospheric conditions 870 

complicate the management of background O3 levels.  871 

A more granular regional comparison reveals notable differences in background O3 concentrations 872 

among various regions of both China and the United States. Specifically, the difference in background 873 

O3 concentrations between Central and Western China (including NWC and SWC) reaches 10 ppb, while 874 

the discrepancy between the Eastern and Western United States is as high as 13 ppb. Western China and 875 

the Western United States exhibit higher background O3 levels. In particular, the Los Angeles area in the 876 

Western United States reports background O3 levels as high as 62 ppb (Parrish and Ennis, 2019), a 877 

phenomenon attributed to the region’s combination of intense ultraviolet radiation, low humidity, and 878 

favorable atmospheric conditions for O3 formation. Similarly, the higher altitudes of Western China 879 

enhance its susceptibility to stratospheric transport, which contributes to elevated O3 concentrations. The 880 

Western United States is similarly influenced by trans-Pacific atmospheric transport, further exacerbating 881 

O3 levels.  882 

In contrast to the significant regional differences observed in China and the United States, 883 

background O3 concentrations in Canada and Europe exhibit relatively small variations, typically ranging 884 

from 4 to 7 ppb. The limited variation in Canada can be attributed to factors such as its low population 885 

density, minimal industrial activity, and expansive natural vegetation, all of which, coupled with its cold 886 

climate, limit O3 production. In Europe, the relatively smaller regional differences are likely as a result 887 

of effective transnational air quality management and stringent pollution control policies, which have 888 

successfully minimized disparities in O3 concentrations across the continent. The relatively uniform air 889 

quality management frameworks in these regions have helped mitigate large-scale emissions and reduce 890 

regional discrepancies in background O3 levels (Miranda et al., 2015; Næss, 2004; Rodrigues et al., 2021; 891 

Xu et al., 2019). 892 
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 893 
Figure 7: Average background O3 concentrations in the United States, Canada, Europe, South Korea, Japan, 894 
and China.  895 

6 Conclusions and perspectives 896 

Background O3 concentrations are critical for understanding O3 pollution, as they represent the baseline 897 

level of O3 even in the absence of local anthropogenic emissions. These concentrations determine the 898 

maximum achievable reduction in O3 through the mitigation of anthropogenic precursor emissions, 899 

making accurate estimates crucial for effective air quality management and setting realistic pollution 900 

control targets. This study provides a comprehensive review of the definition and estimation methods for 901 

background O3 concentrations, with a focus on recent advances in regional research in China. Our 902 

findings reveal an average background O3 concentration of 40.3 ± 11.9 ppb in China, which accounts for 903 

77 % of the tropospheric MDA8 O3. Notable spatial variations are observed, with the highest levels in 904 

Northwest China (48.2 ± 8.3 ppb) and the lowest in Northeast China (33.0 ± 5.7 ppb), alongside an 905 

upward national trend reflecting growing O3 pollution. Despite progress in estimation methods, 906 

discrepancies persist across the four estimation methods, with the in situ measurement estimation method 907 

and statistical analysis estimation method yielding higher values, while the integrated method estimation 908 

method offers lower but more consistent estimates. Compared to other regions, East Asia, including 909 

China, South Korea, and Japan, experiences background O3 levels 3-20 ppb higher than the United States, 910 
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Canada, and Europe. This highlights the region-specific atmospheric conditions and pollution 911 

characteristics, and the imperative of addressing background O3 pollution within a global framework. 912 

Although substantial progress has been made in estimating background O3 over recent decades, 913 

considerable challenges remain due to the complexity of its sources and the multitude of influencing 914 

factors, particularly in the context of global climate changes and transboundary pollution. Future research 915 

should prioritize several key areas to advance the understanding and management of background O3: 916 

6.1 Accurate quantification of background ozone sources and processes 917 

Natural emissions, long-range transport, and stratospheric-tropospheric exchange (STE) are key drivers 918 

of background O3 concentrations; however, significant uncertainties remain in quantifying their 919 

individual contributions. To improve our understanding and predictive capabilities, future research must 920 

prioritize the refinement of quantification methods for these sources and processes. For instance, the 921 

variability of natural emissions, particularly from BVOCs and lightning, remains inadequately 922 

characterized across different climatic conditions. In addition, STE represents another critical but poorly 923 

understood source of background O3, with studies indicating significant seasonal and regional variations 924 

in its contribution (Lu et al., 2019; Xie et al., 2017). Despite the critical importance of these processes, 925 

existing models often encounter difficulties in accurately simulating natural emissions and STE, 926 

primarily due to limitations in model structures and parameterization (Auvray and Bey, 2005; Griffiths 927 

et al., 2021; Huang et al., 2024; Koo et al., 2010). As a result, the accuracy of model predictions for 928 

background O3 concentrations is compromised, resulting in increased uncertainties that hinder effective 929 

policy planning and air quality management. 930 

6.2 Development of integrated method techniques 931 

Single method approaches for estimating background O3 concentrations have inherent limitations, as 932 

they often fail to capture the full spectrum of factors influencing O3 levels. For example, while numerical 933 

models provide valuable insights, they frequently underestimate actual O3 concentrations due to 934 

simplifications in chemical processes and uncertainties in input data. In contrast, statistical analysis 935 

estimation methods are heavily dependent on the availability and representativeness of observational 936 
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data, which can be sparse or biased, particularly in regions with limited monitoring networks. These 937 

limitations highlight the necessity for more integrated approaches that combine the strengths of different 938 

methods.  939 

In this context, the development of integrated method techniques presents a promising approach to 940 

improve background O3 estimation. By integrating observational data, statistical analysis, and numerical 941 

results, integrated method estimation can mitigate the inherent limitations of each individual method. For 942 

example, data assimilation techniques, which combine model outputs with real-time observational data, 943 

have been shown to improve both spatial and temporal resolution, yielding more accurate and robust O3 944 

estimates (Skipper et al., 2021; Sun et al., 2024). Additionally, the integration of high-resolution regional 945 

models with long-term observational datasets can significantly enhance spatiotemporal coverage of 946 

background O3 estimates, enabling precise characterization of O3 variability across diverse geographic 947 

scales, from urban centers to remote rural areas. Recent advancements in machine learning-based fusion 948 

methods further extend the potential of data integration by uncovering nonlinear relationships among 949 

multiple data sources, thereby improving estimation accuracy. These approaches can also account for 950 

complex interactions between meteorological conditions, emission sources, and atmospheric chemistry, 951 

which are often challenging to capture using traditional methods. Given the potential of integrated 952 

method techniques to provide more accurate and comprehensive background O3 estimates, future 953 

research should prioritize their continued development and validation. Such efforts will improve the 954 

precision and reliability of background O3 estimates, thereby enhancing our understanding of regional 955 

O3 pollution dynamics and supporting the development of more effective air quality management 956 

strategies.  957 

6.3 Fostering international collaboration on long-range pollution transport 958 

As air quality standards for O3 become increasingly stringent, background O3 concentrations have 959 

emerged as a critical challenge for many countries in achieving regulatory targets. This issue is 960 

particularly pronounced in regions impacted by both local and transboundary pollution, where efforts to 961 

reduce domestic emissions may not fully address the underlying drivers of elevated background O3 levels. 962 

For instance, studies conducted in the United States have demonstrated that despite substantial reductions 963 
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in local emissions of O3 precursors, background O3 concentrations in some areas remain persistently high 964 

(Cooper et al., 2012; Huang et al., 2015). This phenomenon is partly attributed to long-range transport 965 

of pollutants, including O3 precursors, from distant regions, often spanning international borders and 966 

even continents (Cynthia Lin et al., 2000; Dentener et al., 2010). Such transboundary pollution 967 

underscores the need for comprehensive international cooperation to effectively mitigate the challenges 968 

posed by background O3. 969 

International collaboration is therefore essential for tackling the elevated background O3. To this 970 

end, fostering transboundary emission reduction agreements between countries and regions can play a 971 

pivotal role in curbing the long-range transport of O3 and its precursors. Moreover, strengthening the 972 

global background O3 monitoring network, particularly in remote regions and marine stations, would 973 

significantly enhance the capacity for real-time monitoring of background O3 levels on a global scale. 974 

6.4 Strengthening research on the interaction between background ozone and climate change 975 

The impact of climate change on background O3 concentrations represents a critical area for future 976 

research, with profound implications for air quality management and public health. Climate change is 977 

expected to affect background O3 levels through multiple interconnected mechanisms. For example, 978 

rising temperatures and altered precipitation patterns are expected to affect natural emissions, such as 979 

BVOCs emissions from forests and NOx emissions from soil, both of which are particularly sensitive to 980 

climatic factors like temperature and humidity. These changes would, in turn, influence regional 981 

background O3 levels. Beyond these direct emission impacts, climate change is likely to modify 982 

atmospheric circulation patterns, thereby affecting the long-range transport of atmospheric pollutants and 983 

the spatial distribution of background O3. Alterations in wind patterns and monsoon systems, for example, 984 

could significantly alter the transport of O3 and its precursors over large distances, thereby exacerbating 985 

regional background O3 levels, especially in areas downwind of major pollution sources (Collins et al., 986 

2003; Sonwani et al., 2016; Sudo et al., 2003; Wu et al., 2008). Consequently, future research should 987 

prioritize understanding the dynamic interplay between climate change and background O3 988 

concentrations to improve predictive models and inform effective air quality management strategies.  989 

 990 
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